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This article focuses on 3D fluorescence spectroscopy. After
defining its principle, we then look at the factors which
influence the phenomenon of fluorescence. There follows
a brief discussion of the principal chemometric techniques
implemented to manipulate and exploit fluorescence

data, which have different and specific properties. A new
article will describe the main endogenous fluorophores
found in certain food, biological and environmental
matrices, as well as exogenous fluorophores. Frontal fluo-
rescence has seen considerable development during the
past 15 years in a wide variety of fields, which is why
we shall also be focusing on its principal applications in
terms of the objectives of different studies: classification,
authentication, quality control or process monitoring
indicators. Fluorescence data generate a spectral finger-
print that can characterise samples within a very large
space of variability, such as that which is inherent in food
samples. Fluorescence spectroscopy can thus be used in a
broad range of applications involving biological samples,
animal tissues or environmental samples. Most of these
applications are still qualitative, although quantitative
methods are available. It is generally acknowledged
that 3D fluorescence fingerprinting is more suitable
for recognition, classification or detection processes when
there is a need to save time and achieve optimum sensitivity.
With the recent development of big data and BI, frontal
fluorescence spectroscopy will soon benefit from the
considerable power of artificial intelligence technologies.

1 INTRODUCTION

The phenomenon of luminescence has been known since
ancient times, and it has since been found that when
diamonds are exposed to the sun they glow for several
minutes in the dark. Another example is the ‘glossy
worms’ that figured in different mythologies.(1,2) These
are probably the first known manifestations of phospho-
rescence. It was not until 1664 that Vincenzo Cascariolo,
a shoemaker from Bologna (Italy), rediscovered the
phenomenon in calcined stones containing calcium sulfide
and barium.(3) Luminescence also includes a second radia-
tive phenomenon, fluorescence, a phenomenon whose
name was invented in 1852 by the English physicist
George Gabriel Stokes after observing that fluorite crys-
tals of calcium fluoride emit blue light when illuminated
under ultraviolet light.(3) Since then, fluorescence has
also been observed in living beings, when it is referred
to as bioluminescence. This is particularly the case of
the jellyfish Aequorea victoria, which lives on the west
coast of the USA and synthesizes a protein (green fluo-
rescent protein – GFP) that has fluorescent properties
and gives its host purple hues. Osamu Shimomura was
the first to highlight the existence of this protein that
has since revolutionized molecular biology because of its
numerous applications.(2) From a physical point of view,
fluorescence is the emission of light at a given wavelength
by an object or living being; it is the consequence of
energy being absorbed at an excitation wavelength that
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2 ELECTRONIC ABSORPTION AND LUMINESCENCE

is specific to some of the molecules in the object. In
the case of living beings, this phosphorescence may be
due to biochemical reactions or fluorescence but is most
often due to the emission of light by a protein in the
body, i.e. GFP protein in Aequorea victoria or dsRed
protein synthesized by a coral of the Discosoma genus.
One of the most widespread applications seen today
is fluorescence spectroscopy, particularly because of its
versatility and speed. Using this technique, it is possible
to record the emission of light produced during lumi-
nescence over a range of wavelengths that are generally
in the visible range. These recordings are called fluo-
rescence spectra. When these recordings are made for
several excitation wavelengths, the juxtaposed collec-
tion of fluorescence spectra forms a three-dimensional
representation of the fluorescence intensities detected
(x: emission; y: excitation; z: fluorescence intensity).
These are referred to as 3D spectra or an excitation
emission matrix (EEM).(4–7)

Historically, 3D fluorescence analysis has emerged
after lengthy technological developments during which
improvements to technology, optics, and computer
quality have made it possible to collect emission spectra
over broad ranges of excitation and emission wave-
lengths. The first recordings were limited to a single
excitation wavelength at any one time and one or more
emission wavelengths. Today, all commercial instruments
can enable multiple acquisitions of both excitation and
emission wavelengths.

This article focuses on 3D fluorescence spectroscopy,
also known as emission–excitation fluorescence

spectroscopy. Thus, after defining its principle, we shall
be focusing on the usefulness of this type of fluorescence
excitation mode in terms of its applications. Because
this type of analysis generates large quantities of data,
it is necessary to use rapid and multidimensional data
processing methods in order to better understand the
value of this method when analyzing and characterizing
complex samples.

2 DEFINITIONS AND SPECIFICATIONS

2.1 What Is Fluorescence? A Definition

Fluorescence is an athermic phenomenon, which results
from the emission of light by objects that are living or
not, after the absorption of light. The light thus gene-
rated is ‘cold’ when compared with the so-called ‘hot’
light or incandescence that is produced by a rise in
body temperature. Molecules reach an excited state by
absorbing a photon. A return to the ground state can be
achieved in different ways; one is the emission of photons
at a wavelength higher than the excitation wavelength,
thus producing the fluorescence phenomenon. Fluores-
cence is one of the several possible routes for molecular
relaxation. The principle of fluorescence is explained by
Jablonski’s diagram (Figure 1). At room temperature,
most molecules occupy the lowest vibrational level of the
fundamental electronic state or S0.

(8) In any molecular
electromagnetic spectroscopy, including fluorescence
spectroscopy, molecules populating the fundamental
energy level S0 are excited by the absorption of a photon
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Figure 1 Jablonski diagram.
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Figure 2 (a) Excitation of a fluorophore at three different wavelengths (EX 1, EX 2, EX 3) does not change the emission profile
but does produce variations in fluorescence emission intensity (EM 1, EM 2, EM 3) that correspond to the amplitude of the excitation
spectrum. (b) An example: a quinine absorption and emission fluorescence spectra.

will gradually populate one or more higher energy levels.
These new excited electronic states are singlet states
denoted Sx; x= 1, 2, etc. Each molecule is excited for a
characteristic period of time. The next step may be either
vibrational relaxation or internal conversion that permits
the electron to return to the lowest vibrational state of the
excited state, from S2 to S1 (Figure 1), which is referred
to as nonradiative transition. There is a loss of vibrational
energy whose origin corresponds to collisions between
the excited molecule and other surrounding molecules.
To put it another, during the phenomenon of phosphores-
cence, triplet-singlet transition requires a reorientation
of spin, hence a longer transition that can range from a
millisecond to a second. Fluorescence does not require a
reorientation of spin and the phenomenon occurs within
a few picoseconds or even a few nanoseconds. Any
reorientation consumes energy that is transferred to the
molecular environment. Transitions from S to T, or from
T to S, are referred to as intersystem crossing, and from S
to S or from T to T, internal conversion.

Finally, the emission of fluorescence occurs 10−8 s
after excitation when the electron returns to the most
stable fundamental level, S0. The emitted light has a
wavelength that corresponds to the energy difference
between the two electronic levels concerned. The
emission wavelength is greater than the excitation
wavelength, due to the energy loss known as Stokes’
Shift (Figure 2). Fluorescent molecules are called fluo-
rophores; they mostly contain aromatic rings with
π-linked delocalized electrons. In liquid media, in
particular, the emission wavelength is greater than
the excitation wavelength because the molecule returns
to the ground state from the lowest vibration level
of the excited state, a phenomenon referred to as
Kasha’s rule.

2.2 The Different Types of Fluorescence Spectra

Different types of fluorescence spectra may be encoun-
tered: excitation spectra, emission spectra, and 3D
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Figure 3 3D front-face fluorescence spectra moroccan olive oil (3D view).

spectra including emission–excitation matrices (EEM)
and synchronous fluorescence spectra.(1,9)

An excitation spectrum is indicative of a variation in
the intensity of the emission measured at a fixed wave-
length while the excitation wavelength advances over
a longer or smaller wavelength range. Optimum instal-
lation of the instrument should deliver excitation light
as close as possible to the absorption spectrum of the
fluorophore. Corrections to the apparatus are, therefore,
necessary in many cases because the excitation spectrum
is disturbed by variations in the incident intensity with
the wavelength. The corrected excitation spectrum is,
therefore, identical to the absorption spectrum, provided
that the solution under analysis only contains one mole-
cular species in the ground state. If there are several
molecular species or several chemical oxidation states, or
protonated-deprotonated states of a single species, the
two corrected absorption and excitation spectra are no
longer superimposable; it may be interesting to compare
them (Figure 2).

An emission spectrum reflects the probability distribu-
tion of the various transitions from the lowest vibrational
level of S1 toward the various vibrational levels of S0.
It, therefore, corresponds to a variation of the lumines-
cence light emission intensity as a function of the fixed
excitation wavelength (Figure 2). A fluorescence emission
spectrum is characteristic of a given compound.

An absorption spectrum results from the partial absorp-
tion of certain wavelengths of the incident excitation
beam. The missing frequencies are those that best
characterize the energy levels of the sample. Once
corrections to the instrumentation appropriate to the

analysis have been performed, the absorption spectrum
can replace the fluorescence excitation spectrum.

A 3D fluorescence spectrum is an EEM. When the
excitation and emission monochromators are used
successively, it is possible to measure emission spectra
for different excitation wavelengths. This results in a
collection of emission spectra at different excitation
wavelengths with a constant step. Therefore, the EEM
obtained has two dimensions: excitation wavelengths and
emission wavelengths. Fluorescence matrices provide
a type of fluorescence map of all the fluorophores in a
mixture, thus enabling their concomitant characterization
(Figures 3 and 4).

Synchronous fluorescence spectra have the advantage
of being able to characterize several fluorophores from a
single spectrum and thus constitutes a good compromise
between EEM spectra and the standard acquisition of
excitation and emission fluorescence spectra. Unlike
EEM spectra, a fixed wavelength difference of Δλ
between the excitation wavelength λex and the emission
wavelength λem is used for spectral acquisition while
respecting the following constraint: λem =Δλ+λex.

(10,11)

The spectrum is measured at the excitation wavelengths
defined by λex1, λex2, … , λexj, and the emission wave-
lengths will be: λem1 =λex1 +Δλ; λem2 =λex2 +Δλ, etc.

Synchronous spectra can, therefore, be observed as
an oblique band of the excitation–emission surface
(Figure 5). Δλ is also called offset and can be changed.(12)

According to the scanning mode applied between the
excitation and emission monochromators, three types
of synchronous fluorescence spectra(13) may be found.
Scanning of the excitation and emission monochromator
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Figure 4 3D fluorescence spectra canola oil (contour map) (own spectra).
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Figure 5 Different types of fluorescence spectra between 3D fluorescence spectra and synchronous spectra. (Source: Sikorska,
https://www.intechopen.com/books/olive-oil-constituents-quality-health-properties-and-bioconversions/analysis-of-olive-oils-by-
fluorescence-spectroscopy-methods-and-applications. Licensed under CC BY 3.0.(12))
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Figure 6 Synchronous spectrum, building in progress.

can be achieved using a constant wavelength shift Δλ,
with a shift in frequency or constant energy Δv or at
different speeds. When the ‘offset’ varies with the same
pitch a partial 3D spectrum is obtained, as shown in
Figure 6.(13,14) This mode of acquisition is the most
widespread in the literature.

Synchronous fluorescence spectroscopy (SFS) has many
advantages: It provides more complete information on
fluorophore mixtures, and it enables the production of
finer spectral bands, a simplification of emission spectra,
a reduction in the spectral change for a given analyte
and compensation for Rayleigh and Raman scattering.
Rapid and practical to use, synchronous fluorescence
spectra (Figure 6) are a good compromise versus total
luminescence spectra, i.e. EEMs. SFS is often used to
characterize mixtures and has numerous applications
in the field of oil chemistry. It has recently been intro-
duced for food analysis and has encountered consi-
derable success.(15–17) Although many studies have
been conducted using SFS, only a few of them have
simultaneously considered different offsets. In this article,
therefore, we have only looked at studies presenting a
global analysis of 3D synchronous spectra.

The 3D spectrum is generally reshaped from a series of
emission, excitation, or synchronous spectra in order to
generate a response surface that groups all fluorescence
intensities within a selected region. However, there are
several drawbacks to this type of acquisition:

1. Acquisition is slow because of wavelength scanning,
and a higher speed implies a reduction in signal
quality as the signal-to-noise ratio changes inversely
with the ratio of scanning speed to acquisition time,
etc.

2. The smaller the wavelength step, the longer the time
required for analysis.

The different fluorescence spectra described above can
be obtained using a variety of systems, such as the Hitachi
F4500, Perkin-Elmer LS50B, Fluoromax 4 from Horiba
Scientific, Xenius from Safas, or the FS5 from Edinburgh
Instruments. Some instruments enable the rapid acquisi-
tion of 3D spectra in less than a minute because they are
equipped with a charge coupled device (CCD) detector.
Here also, the speed of acquisition is inversely propor-
tional to sensitivity (Aqualog – Horiba Scientific). The
range of excitation wavelengths, associated steps, and
bandwidths and the range of emission wavelengths need
to be defined. Using this type of instrument, a large
number of emission spectra with a regular pitch of exci-
tation wavelengths can be recorded.

2.3 Spectral Acquisition Mode

The sample is presented for measurement depending on
the optical organization of the instrument which requires
orientation with respect to the exciting light.
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Figure 7 Schema of right-angle fluorescence.

2.3.1 Right-angle Fluorescence

When light passes through the sample, fluorescence can
be disturbed or decreased by absorbance phenomena
(Figure 7). The sample must, therefore, be diluted so that
absorbance goes below 0.05. Right-angle fluorescence is,
therefore, not suitable for opaque solids, powders, or
highly viscous samples.

2.3.2 Front-face Fluorescence

To avoid dilution and absorption problems, the solu-
tion is to present the sample under incident light at an
angle of less than 90∘ (Figure 8), so that measurements
are performed in a way that is similar to ATR-infrared
spectroscopy (ATR – attenuated total reflection). This is
a specific recording mode in infrared spectroscopy that
uses a crystal as a support for evanescent wave transmis-
sion which is produced by exciting light on the crystal
sample holder from the incidence angle point of view.
It can thus overcome the drawbacks right-angle fluo-
rescence spectroscopy by modifying the angle of inci-
dence of the exciting light by orienting the sample holder
in a particular way. This angle is usually 56∘, in which
case it is frontal fluorescence.(18) Excitation and emis-
sion occur on the same optical surface of the cuvette.
The light penetrates by a few microns. The sample may
be opaque, but it must be homogeneous so that the
surface characteristics will be representative of the entire
sample.(8,19)

From the excitation
monochromator

Between 30 and 60°

To the emission
monochromator

Sample

Figure 8 Schema of front-face fluorescence.

3 FACTORS AFFECTING FLUORESCENCE

3.1 Fluorescence Inhibition

Inhibition is any process that causes a decrease in fluo-
rescence. It is defined as a loss of fluorescence signal
due to short-range interactions between the fluorophore
and the local molecular environment, including other
fluorophores. There are four types of inhibition: filter
effect, excimer effect, and static and dynamic inhibi-
tion (Figure 9a). A filter effect is caused by absorption
of the fluorescence emitted due to reabsorption within
the solution. The excimer effect is a phenomenon that
occurs during excimer formation (Figure 9b) because of
the collision of two identical molecules, the former in
an excited state and the latter in ground state.(1) Static
inhibition is the formation of a complex between the fluo-
rescent molecule and an inhibitory species that leads to
the decrease in fluorescence intensity. Dynamic inhibition
is collisional inhibition during the lifetime of the excited
state between the fluorescent molecule and inhibitory
molecules, resulting in a decrease in fluorescence in terms
of both intensity and half-life.

3.2 Environmental Conditions

Fluorescence spectroscopy is influenced by environ-
mental conditions such as polarity, pH, and temperature
(Figure 10).(1) The solvent has an influence on the reac-
tion rate, the position of a chemical equilibrium, and
the spectral bands recorded. Polarity characterizes the
state of a molecule with positive and negative charges.
The more the charges are distributed to one side or
the other of a molecule or bond, the more it will be
polar and vice versa; if the charges are distributed in
a completely symmetrical way, the molecule will be
nonpolar. In a polar environment, the fluorophore has a
larger electric dipole moment in the excited state than
in the ground state.(8) After excitation, dipoles from the
solvent can be reoriented around the excited state. As the
polarity of the solvent increases, this effect becomes more
pronounced, resulting in emissions at lower energies or
higher wavelengths. Generally, in a polar environment,
the emission spectrum will see its maximum shift toward
the highest wavelengths. Nonpolar molecules such as
unsubstituted aromatic hydrocarbons are less sensitive
to solvent polarity.(8) As polarity increases, the wave-
length at maximum fluorescence increases and causes
expansion of the Stokes phenomenon. One of the effects
of polarity is hydrogen bonding.(1) The fluorescence of
aromatic compounds with acidic or basic substituent rings
is often pH-dependent. Wavelength and emission inten-
sity are different depending on whether the molecule
is protonated or deprotonated. Both quantum yield
and excitation and emission spectra may be modified
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Figure 9 (a) Quenching schema. (b) Diagram of excimer formation according to Ref. 1. (Reproduced with permission from Valeur,
B.: Invitation à la fluorescence moléculaire; De Boeck: Bruxelles, 2004. © DE BOECK, 2004.)

by a change to pH.(1,10) A reduction in fluorescence is
observed when the temperature rises. This observation
can be explained by several mechanisms:

1. An increase in the conversion rate from electronic
energy levels to vibrational energy levels

2. Transition from the excited singlet state to an upper
triplet intersystem crossover state

3. Loss of the plane structure of the molecule
4. The dissociation of molecular complexes in line with

temperature.

A rise in temperature, therefore, intensifies the Brow-
nian motion of the molecules. The frequency of collisions
between molecules in the fluorophore and solvent
increases, the dissipation of energy in the form of heat
due to molecular motion and molecular shocks becomes
very efficient, and the probability of a deactivation of
internal conversion increases. The probability increases
that the electronic state will change from singlet to
triplet level. Incident radiation is not only absorbed
or transmitted by the sample, it is also diffused in all
directions. As the temperature of the medium rises, the
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with permission from Valeur, B.: Invitation à la fluorescence
moléculaire; De Boeck: Bruxelles, 2004. © DE BOECK,
2004.(1))

three parameters of fluorescence: intensity, quantum
yield, and lifetime decrease. Ultimately, the temperature
may also induce an extinction of the emission. The rise
in quantum yield in line with pressure originates from
vibrational relaxation processes at singlet-excited levels.
The increase in the intersystem-crossing rate is due to an
increase in the vibrational energy of singlet-excited levels.
When pressure increases, vibrational relaxation processes
induce intermolecular collisions, accelerate the transition
from the initial vibrational level to vibrational states of
lower energy. A reduction in fluorescence intensity is also
observed.

Viscosity may also affect the intensity of fluores-
cence emission. An increase in fluorescence is observed
when viscosity rises.(10) For example, a failure to take
account of superimposed effects of nonindependent
factors such as viscosity and temperature may lead to
misinterpretation.(8) Decay of the fluorescence inten-
sity of trans-stilbene is temperature-dependent, but not
dependent on viscosity; it becomes isomerized in the
excited state from the cis to the trans form.(8) It should
also be noted that because UV light is used for excitation,
photochemical decomposition may occur, with a decrease
or even suppression of fluorescence.(10)

3.3 Diffusion

Light scattering is a phenomenon that can disrupt the
fluorescence signal measured. This is the case with a weak
Stokes shift, resulting in an overlap between the light

scattering phenomenon and the emission peak of fluo-
rophores (Figures 11 and 12). The scattering observed
involves two light–matter interactions: Rayleigh and
Raman scattering.

3.3.1 Rayleigh Scattering

Rayleigh scattering is a wave–matter interaction due
to an elastic collision between a photon and electrons
in the molecule. It involves the scattering of photons
by electrons, which are much smaller than the incident
wavelength. Photons are scattered not by free elec-
trons but by those bound to an atom or molecule. The
electric field of the incident wave deforms the electron
cloud of the atoms; the center of gravity of the negative
charges thus oscillates with respect to the positive charge
of the nucleus. A dipole is thus created and radiates,
causing induced radiation called Rayleigh scattering.
The Rayleigh law states that the intensity diffused by a
medium is inversely proportional to the fourth power
of the wavelength of the incident light 1/λ4. In other
words, the lower the wavelength the more the radiation
will be scattered and the intensity of the scattered light
will be higher. Wavelengths in the ultraviolet range are
diffused more and therefore transmitted less than those
in the infrared spectrum. Photons are scattered when
the emission wavelength is the same as the excitation
wavelength. There is no energy loss. Rayleigh scattering,
therefore, does not carry chemical information on the
medium under analysis and can disturb the fluorescence
of compounds of interest by limiting sensitivity, particu-
larly for wavelengths close to the excitation wavelength.
It may be considered as an artifact, which needs to be
removed in order to access the fluorescence signal of
targeted molecules (Figure 11). In many cases, there-
fore, Rayleigh scattering may be of no interest to the
chemical analysis because it is not linked to the concen-
tration of molecules making up the sample. However,
the shift between excitation and emission, as imposed
by the Stokes’ law, minimizes the risk of overlap with
the emission spectrum of fluorophores. Rayleigh scat-
tering is always visible when recording a 3D spectrum.
Different methods are available to prevent its acquisi-
tion or enable its elimination during post-acquisition
treatment.(20,21)

3.3.2 Raman Scattering

Raman scattering is also an interaction between photons
arising from a monochromatic light source and molecules
in the sample. Some photons at 1/108 will be scattered
inelastically with a slight loss of energy that corresponds
to vibrational transition. Raman scattering occurs
when the exciter electric field induces a change to
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the polarization of the molecule. It can be particularly
effective in detecting polarization changes during the
vibration of homo- or heteronuclear skeletons. The result
is a weak emission that may interfere or be confused
with the fluorescence of the sample that is 100 to 1000
times weaker than Rayleigh scattering. Raman scattering
does not mask the fluorescence signal, but its position
may cause significant signal distortion.(22,23) Exploitation
of the Raman interaction as a featuring signal of the
molecules led to the development of Raman spectroscopy.
This technology complements infrared spectroscopy. The
former concerns variations in the polarization of chemical

bonds, i.e. the dipole moment induces bonds while the
second concerns the permanent dipole moment of the
chemical bonds. Light–matter interaction processes cause
particular vibrations to become active in either Infrared
or Raman spectroscopy or both (mutual exclusion
rules).

The applications of Raman spectroscopy may concern
the determination of chemical structure, molecular
configuration (cis, trans for polymers), the conformation
of molecular arrangements (e.g. proteins in a helix or
sheet, etc.), the study of molecular orientation, or intra
and intermolecular forces.
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4 ANALYSIS OF FLUORESCENCE DATA

4.1 Structure of Fluorescence Data

According to Christensen,(15) ‘an ideal fluorescence
measurement device requires different conditions: 1.
In order to obtain the most linear fluorescence inten-
sity, the concentration range of the fluorophores must
be sufficiently low; 2. For each fluorophore, the inde-
pendence of fluorescence signals from each other is
essential; 3. Compared to relevant fluorescence signals,
signals from interfering species should be negligible.
It is difficult for all these conditions to be met in real
samples.’ Given the complexity of the spectra, its use
in targeted analysis is quite unusual; the spectra tend to
be used as spectral fingerprints of samples. Data from
the spectra can be used either quantitatively by linking
the signals to fluorophore concentrations according
to a calibration procedure, or under a fingerprinting
approach that uses chemometrics and a greater number
of observations to enable more efficient modeling. The
multidimensional fluorescence signals recorded for a
sample are presented in a fluorescence intensity matrix.
This matrix is conventionally represented in a figure in
plan view where color scale indicates the intensity and
the abscissa and ordinate the excitation and emission
wavelengths, respectively, as shown in Figure 4. This
EEM for each fluorophore can be described as a function
of a concentration-dependent factor 𝛂, its excitation
b and emission characteristics c. Overall fluorescence
responds to the following equation(15):

EEM =
n∑

i=1

𝛂i × bi(λex) × ci(λem) (1)

Equation 1: Mathematical modeling of EEM.

To draw benefits from 3D fluorescence spectra, chemo-
metrics is often used to extract interpretable informa-
tion from these complex data. Chemometrics can be
defined as the discipline that combines data analysis and

analytical chemistry.(24) It gathers and develops a set of
mathematical tools that can be used to extract structured
and interpretable information from chemical data. Unlike
statistics, chemometrics require few assumptions but need
parameterization that governs the performance of the
method. The validation step is, therefore, very important
in chemometrics. Each sample produces an EEM matrix.
Multiple matrices are combined to create a 3-way array
cube, and if EEM are acquired under multiple experi-
mental conditions, the data are arranged in an N-way
array. This 3- or N-way array can then be used as input
for two types of chemometric methods depending on
whether its dimensions are kept intact or if it is unfolded
in one or more chosen dimensions. In the former, it will
be broken down using multiway or multimode methods
such as parallel factors analysis (PARAFAC)(25) for 3-
order tensors, or Tucker3 for N-order tensors. In the latter
case, it will be analyzed in its unfolded form using 2-way
algorithms from the same family as principal component
analysis (PCA) (Figure 13).

4.2 The Chemometric Techniques Most Widely Used
for Excitation Emission Matrix Data

3D fluorescence tends to be used for qualitative ana-
lysis, i.e. the data acquired by fluorescence spectroscopy
are global for a sample without specifically orienting the
analysis toward a particular chemical compound. This
is called fingerprint analysis. This approach requires the
use of chemometrics. However, there are cases where 3D
fluorescence can enable quantification, particularly in the
case of contaminants (Section 5.2), and the chemometric
methods applied are different.

We can, therefore, make a distinction between unsu-
pervised exploratory methods which enable a clearer
understanding of the structure of the data, and supervised
methods which use previously known complementary
information on the data in order to model and predict the
state of the system. This mainly concerns classification
methods. In the case of unsupervised methods, the fluo-
rescence intensity matrices are analyzed using techniques

Excitation

Emission

Object

X
=

a1

b1

c1

an

bn

cn

E+ ··· + +

Figure 13 Principle of decomposition of a 3D cube according to the PARAFAC model.
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12 ELECTRONIC ABSORPTION AND LUMINESCENCE

such as PCA, independent component analysis (ICA),
or multivariate curve resolution-alternating least square
(MCR-ALS). By construction, lines in the fluorescence
matrices correspond to excitation wavelengths, while
columns correspond to emission wavelengths. In most
cases, a series of samples will produce a collection of
excitation–emission matrices. This is arranged as a fluo-
rescence cube that needs to be unfolded before PCA or
ICA are applied.

PCA is the most widely known factorial method(26,27)

It is of a multivariate exploratory nature that can reduce
the dimensions of a dataset. It frequently employed as
the basis for data compression techniques. It enables a
representation of data in terms of the greatest variance
in its main components.

ICA can be used to extract underlying signals from a
mix of signals of unknown proportions and number.(28,29)

ICA is, therefore, a technique for the blind separa-
tion of sources. Independent components (ICs) are
calculated to be statistically independent of each other,
the goal being to find physically significant vectors.
Moreover, the optimum number of ICs is obtained
using different techniques such as ICA-by-blocks or the
Durbin–Watson criterion.(30–33) It is a powerful method
in 3D fluorescence spectroscopy that can be used to iden-
tify chemically pure and therefore more interpretable
signals.

MCR-ALS is a powerful modeling tool that can study
complex chemical systems with a minimum number of
assumptions and with flexibility on the constraints during
profile optimization.(34–36) The objective of MCR-ALS
is to recover chemically pure response patterns in the
constituents or chemical species of an unresolved mixture
from the information contained in the original dataset.
In the case of 3D fluorescence spectra, and because the
analysis is multiway, one of the most appropriate methods
which respects the trilinear nature of fluorescence data is
PARAFAC.

PARAFAC is a generalization of PCA to 3-higher order
tensors.(37,38) The algorithm performs a trilinear decom-
position, i.e. it breaks down the data cube into a sum
of products of three vectors called PARAFAC loadings.
These loadings form triplet vectors that contribute as far
as possible to the evolution of signals according to the
three multivariate directions that made up the initial cube.
It is generally considered when analyzing fluorescence
cubes that the vectors of the spectral modes form the
basis for the decomposition of loadings, while the vectors
of the first mode group the coordinate scores of the
samples in the spectral base. In our case, the three modes
are excitation wavelengths, emission wavelengths, and
samples. PARAFAC is an efficient tool for the analysis
of mixtures of several chemical compounds characte-
rized by bilinear responses. PARAFAC can identify two

profiles (the excitation profile and emission profile) of
pure compounds and associate a proportion of them in the
mixture. The model accepts constraints, the most common
being nonnegativity and orthogonality.(39) In the case of
EEM, only the nonnegativity constraint of loadings has
a physical meaning. More information on this method
is available elsewhere,(38,40) but also Rasmus Bro.(41–46)

PARAFAC is also widely used in 3D fluorescence spec-
troscopy because it is mathematically very well suited to
the trilinearity of the data. It is possible to work directly
on the EEM and deduce pure signals.

When applying supervised methods, an initial data table
calibration set is often available to build a model. This
is then validated with another data set called the valida-
tion set.

One of the best-known methods is partial least squares
(PLS) regression. This is a method used to construct
predictive models when the factors are numerous and
highly collinear. It enables the establishment of links
between a set of dependent variables Y and a set of inde-
pendent variables X when the number of variables (both
independent and dependent) is high.(47) The result of the
PLS is thus a set of matrices, which can be used to compute
a series of regression coefficients B in order to predict
new samples. Other supervised methods are also avail-
able, such as the support vector machine (SVM), discrim-
inant factor analysis (DFA), or partial least squares-
discriminant analysis (PLS-DA).

So depending on the purpose of the study, an unsu-
pervised or supervised method will be chosen. However,
some studies combine both approaches; there data are
first of all processed using an exploratory method before
a supervised method is applied.

5 THE PRINCIPAL NATURAL
FLUOROPHORES

The use of 3D fluorescence enables the detection of
different fluorophores present in samples. Because the
total fluorophore composition of the sample is unknown,
a 3D spectrum over a wide range of excitation and
emission wavelengths makes it possible to obtain a spec-
tral fingerprint of the sample. The use of chemometric
methods provides the means to identify the fluorophores
from pairs of excitation and emission wavelengths. It
is nevertheless important to remember that in complex
samples such as foods, fluorophore signals undergo
environment-related interactions, which can lead to
changes in the positions of the excitation–emission bands
of fluorophores, thus rendering their identification more
difficult.

In this section, we will be focusing on the identifica-
tion of endogenous fluorophores in foods, water, soil, or
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3D FLUORESCENCE SPECTROSCOPY AND ITS APPLICATIONS 13

biological fluids such as urine, and some examples will
be detailed. In addition, a section will be devoted to
exogenous fluorophores such as the contaminants that
may also be detected in many matrices.

5.1 Endogenous Fluorophores

These are the fluorophores that are present naturally
in the samples to be analyzed. These molecules may
be aromatic amino acids, e.g. tryptophan, purines, pyri-
midines, flavins, chlorophyll, certain enzymatic cofactors
(e.g. NADH), riboflavin, and also numerous vitamins such
as vitamins A, B, and E, as well as polyphenols.

5.1.1 Identification of Fluorophores in Foods

The principal difficulty associated with identifying fluo-
rophores in food matrices which are by nature complex
mixtures is the superimposition of signals of all the fluo-
rophores present in the sample. It is, therefore, impe-
rative to have chemometric tools capable of extracting
the different signals that make up the fluorescence
masses recorded. The identification process does not,
therefore, involve the use of a large database of fluo-
rophores constructed in various situations. Knowledge

of the signals emitted by the most common fluorophores
in various molecular environments is crucial to a good
interpretation of the fluorescence data.(15,48) Figure 14
shows the standardized spectra of some fluorophores
commonly found in foods.(15) These include vitamin E
(λex = 298 nm / λem = 325 nm), vitamin B2 – Riboflavin
(λex = 270 nm, 380 nm, 450 nm / λem = 520 nm), trypto-
phan (λex 250–300 nm / λem = 280–350 nm), porphyrins
such as chlorophyll (λex = 420 nm / λem = 680 nm) and
other molecules such as ATP (adenosine triphos-
phate – λex = 292 nm / λem = 388 nm) and NAD (nicoti-
namide adenine dinucleotide – λex = 344 nm / λem =
465 nm). A more exhaustive list of excitation and emis-
sion wavelengths useful for studying foods can be found
in the FoodFluor database, which also offers access to
excitation/emission couples used to obtain the specific
spectral signatures of certain foods.(49) Airado-Rodriguez
et al.(50) tried to identify families of fluorophores present
in wine (Figure 15). The EEM matrices of several
polyphenols characteristic of wine such, as flavan-3-ols
(λex = 280/ λem = 320–360 nm), catechin, and stilbenes
(λex = 318 nm / λem = 390 nm) such as resveratrol, were
recorded. An equivalent study conducted on 50 air-dried
medicinal herbs demonstrated the potential of 3D fluo-
rescence spectroscopy coupled with the chemometric
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Figure 14 Fluorescence landscape map indicating the spectral properties of the selected 11 food-relevant fluorophores listed.
(Reprinted with permission from Christensen J., Norgaard L., Bro R. and Engelsen S.r.B., Multivariate Autofluorescence of Intact
Food Systems. Chemical Reviews, 106, 1979–1994 (2006). Copyright 2006 American Chemical Society.(15))
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methods PARAFAC-PCA/CA to identify 13 polyphenols
(Figure 16).(51) Many studies have been performed to
characterize foods using 3D fluorescence spectroscopy.
Table 1 shows examples of such foods, with the name
of the food matrix, the purpose of the study, the excita-
tion and emission wavelength ranges, the fluorophores
studied, the chemometric treatment, the results obtained,
and bibliographical references.

5.1.2 Fluorophores in the Environment

Dissolved organic matter (DOM) and its fluctuations
are an essential element in the quality of terrestrial and
aquatic natural systems, so its study is crucial. In this
field, 3D fluorescence spectroscopy coupled with chemo-
metrics can produce very promising results when charac-
terizing DOM in different freshwater, marine, and soil
environments.(75,76) The number of publications in this
area is considerable, so we have chosen to present the
main features of DOM based on the papers by Ishii
and Boyer,(77) Henderson et al.,(78) Bridgeman et al.,(79)

Carstea et al.,(80) and Yang et al.(81) and some articles from
teams who have done a lot of work in this field such as
Coble,(82) Stedmon et al.,(83–87) and Chen et al.(88)

General remark: One of the problems encountered
when exploiting 3D fluorescence signals is linked to the
fact that a fluorescence intensity may be the combination
of several fluorescence emissions from different fluo-
rophores responding to the same excitation–emission
pair. A fluorescence mass is then obtained whose enve-
lope is the weighted sum of several underlying signals.
One possible solution is to try to estimate the contri-
bution of each of the signals making up the fluorescent
signal, as proposed in the fluorescence regional integra-
tion (FRI) method.(88) The originality of this method is
that it enables the quantification of several EEM peaks.
Quantitative analysis using the FRI technique is based
on integrating the volume below each region of the
EEM spectrum. It is thus possible to specify zones with
excitation and emission wavelengths that correspond
to a particular fluorophore. Integration of the bands
observed in a given region of the EEM can be performed
under the reasonable assumption that the fluorescence
signal represents the cumulative fluorescence response
of all DOM present in the sample. Figure 17 shows the
fluorescence regions characteristic of organic matter.
It has been shown that molecular families are found
in fairly well-delimited regions, thus facilitating their
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18 ELECTRONIC ABSORPTION AND LUMINESCENCE

identification. For example, regions I and II correspond
to aromatic proteins such as tyrosine; region IV is that
of soluble microbial by-products, whereas region V
is associated with humic acids. Finally, region III, which
corresponds to excitation wavelengths <250 nm and emis-
sion wavelengths >350 nm, is associated with molecules
such as fulvic acid. Figure 17 groups several families
of fluorophores that might be found in environmental
samples, including soil. Because the FRI method is
reliant on integrating the volume below each region, its
use remains limited when there is spectral interference
or if one spectrum conceals another. An alternative
to the FRI method is PARAFAC. Indeed, a study
presenting a PARAFAC model with six components(89)

showed that it is possible to link PARAFAC loadings
to different components of marine ecosystems, soils,
water, proteins, humic acids, etc. This work provided
elements for interpreting fluorescence data and specified
the location of useful fluorescence signals on EEMs
(Table 2). PARAFAC thus makes it possible to char-
acterize each component of DOM in the environment.
It is generally reported that component 1 corresponds
to the group of humic fluorophores that can charac-
terize terrestrial environments such as soils, whereas
component 2 is more closely related to quinone-like
compounds(90) and tends to be used to characterize
aquatic environments.(84–87) Component 3, more variable
in the studies, can be used for both terrestrial and aquatic
environments as it is linked to high concentrations of
chlorophyll. If the components are compared with the
regions, it can be seen that component 3 has the closest
correspondence to region IV.(88) In the case of waste-
water component 1 is absent, but it appears and increases
with precipitation due to runoff.(84) Components 2 and 3
enable a clearer characterization of wastewater. Compo-
nent 2 is important in treated water.(91,92) On the other
hand, component 3 is an excellent indicator of sewage
contamination in swimming pools.(93) With respect to
light, component 1 is more highly concentrated on the
surface of water so it is more resistant to photodegra-
dation, whereas component 2 is found at higher levels
in groundwater and is, therefore, more sensitive to
photodegradation.(87,94) Component 3 is intermediate in
terms of its weaker sensitivity to photodegradation.

The majority of PARAFAC studies have attempted to
describe temporal and spatial variabilities of DOM. But
to date, it has not been confirmed whether variations in
DOM fluorescence are due to chemical transformation,
physical transformation, or modifications to the source of
DOM. Table 3 presents the technical aspects of the main
articles cited here. For a general overview, many of the
studies performed on DOM since the 2000s, in particular,
were summarized and criticized in the review by Ishii and
Boyer.(77)

5.1.3 Fluorophores in Other Media

Although most of the literature concerns the environment
and foods, a number of preliminary studies have been
performed in biological media. Studies on urine, blood,
or plasma samples were carried out in order to make a
distinction between malignant and healthy cells(100–102) or
to achieve a rapid diagnosis of urinary tract infection(103)

(Section 6.2). A study on a new method for the kinetic
and quantitative analysis of NADH degradation and FAD
formation in plasma(104) is also worthy of mention. Anec-
dotally, the literature reports particular studies on the
analysis of butterfly wings,(105) pollen,(106) and also works
of art.(107) Some examples are shown in Table 4.

5.2 Exogenous Fluorophores

Exogenous fluorophores are the fluorescent compounds
contained in a matrix – whether it be food, water, soil,
animals, or plants – but which did not initially belong to
this matrix (Table 5). These are external pollutants such
as drugs or contaminants. The emission of fluorescence
is strongly influenced by the medium, and fluores-
cent molecules can be used to label a target molecule,
being referred to as fluorescent probes; however, we
will not be focusing on them in this article but readers
can find detailed aspects concerning them elsewhere.(1)

Exogenous fluorophores include contaminants such as
polycyclic aromatic hydrocarbons (PAHs), pesticides,
aromatic amines, and also mycotoxins and drugs, etc.
For PAH and pesticides, conventional tests such as
chromatographic methods are effective but extremely
time-consuming and laborious. For these reasons, 3D
fluorescence spectroscopy is preferred, although there
may sometimes be a more or less significant overlap
between the excitation and emission bands of PAHs and
other interfering compounds, which can lead to a lack
of selectivity. This problem can partly be solved through
the use of chemometric methods, on the one hand, to
deconvolute the signal and quantify these compounds
individually. A study(108) was thus published using 3D
fluorescence analysis combined with PARAFAC to
discriminate and quantify certain PAHs and pesticides
such as dimethyl naphthalene, fluorene, phenanthrene,
anthracene, pyrene, benzo[a]anthracene, and pesticides
at concentrations of around microgram per liter and in
the presence of humic substances. Inhibition phenomena
affecting PAHs and pesticides may occur when concen-
trations of humic substances exceed 2.5 mg L−1. When
comparing the results concerning PARAFAC compo-
nents from fluorescence analysis, PAH concentrations
obtained using GC-MS with natural samples, the correla-
tion varies as a function of the PAHs and is much better
for alkylated PAHs (r2 = 0.9). Fluorescence spectroscopy
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Table 3 Some examples of fluorophores found in environmental samples (water, soil, etc.)

Matrix Samples Aim Excitation Emission Fluorophores Chemometric References
(nm) (nm) treatment

Seawater To examine the range of
environmental variability
in the fluorescence
properties of naturally
occurring DOM

260
455

270
510

465
709

Tyr-like
Tryp-like
Humic-like
Marine humic-like

82

Reclaimed water
samples

Excess sludge
sample

To predict the potential for
the formation of
disinfection by-products in
recycled water. See Section
6.3

200–450 250–600 Humic acid (HA)
Fulvic acid (FA)

Regression
models

95

Water samples
and
wastewater
samples

To use EEM as a
fingerprinting tool to
monitor wastewater
systems. See Section 6.3

200–500 225–625 Humic acid
BSA

PARAFAC 96

Asphaltene
samples

To extract information from
asphaltene samples at
different concentrations
using fluorescence
spectroscopy with
MCR-ALS. See Section 6.1

300
400

320
700

Monomer
Dimer
Trimer

MCR-ALS 97

Swimming pool
water

To study the EEM of DOM
in swimming pools to
generate data on water
quality

240
450

300
600

Humic-like PARAFAC 93

Composts To evaluate the application
of solid sample phase
(SPF)–EEM to organic
matter in compost

250
500

300
600

Humic-like
Protein-like

PARAFAC 75

Municipal
recycled water
treatment
plants

To obtain a robust
characterization of DOM
using EEM in recycled
municipal water plants

200
400

280
500

Terrestrial
humic-like

Microbial
humic-like

Protein-like

PARAFAC 92

Aquatic
ecosystems

To trace fractions of DOM in
aquatic systems using
EEM

240
400

320
580

Humic-like
Soil fulvic-like
Protein-like

PARAFAC 86

DOM To characterize organic
matter in aqueous systems
and tutorial

200
400

280
500

Humics (3)
Tyrosine
Tryptophan

PARAFAC
NPLS
SOM
ANN

98, 99

can, therefore, be used as a low-cost screening method to
monitor PAH and pesticide concentrations at microgram
per liter levels in chronically or sporadically contami-
nated natural water. An improvement in the detection
threshold of 3D fluorescence could be achieved with
better sample preparation, a more sensitive fluorescence
detector and/or a chemometric approach which could
better deconvolute the fluorescence signal. One study(109)

involved obtaining pesticide fluorescence fingerprints
through their direct identification as target compounds in
soil and water samples. The database used described 48
pesticides used in Morocco. The problem was to attain the
limit of detection, particularly without sample prepara-
tion. This approach reported by Ferretto et al.(108) might

be better suited to use as an alert method in the event of
massive contamination by any fluorescent pollutant(109)

rather than the accurate quantification of soil pollutants.
In the papers described earlier, it appeared that 3D fluo-
rescence could not generate positive results at the desired
concentrations for the analysis of contaminants, i.e. at
nanogram per liter. Elcoroaristizabal et al.(110) tested
the MCR-ALS, PARAFAC, and U-PLS/RBL (unfolded
partial least squares coupled to residual bilinearization)
algorithms (Figure 18) and compared them in order to
obtain qualitative and quantitative information on the
analytes and their interferences in complex samples
of PAH mixtures analyzed using EEM fluorescence
spectroscopy.
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Table 4 Some examples of biological and other samples

Matrix Aim Excitation Emission Fluorophores Chemometric References
(nm) (nm) treatment

Human blood
plasma samples

Diluted and
undiluted

To explore EEM F as a
potential metabonomic
tool for the early detection
of colorectal cancer

250–450 300–600 Tryp
NADPH

PARAFAC 100

Breast cancer
samples (38)

20× diluted
500× diluted

To discriminate breast cancer
samples by measuring the
fluorescence of serum
samples (diluted and
undiluted) combined with
chemometric tools

230
400

250
600

Three tumor
markers
CA15-3, CEA,
TPA

ECVA
LDA

101

Mouse skin To characterize the early
diagnosis of neoplastic
changes in
DMBA-TPA-induced
mouse skin carcinogenesis

280–460 300
700

Trp
Collagen
NADH
FAD
Porphyrin

DA 102

Urine samples Using EEMF to develop a
simple and rapid
diagnostic tool for urinary
tract infections

250
450
SFS

310
750
Offset 90

and 30

Tryp
Indoxyl sulfate
Indoxyl 3 acetate
Xanthine

103

Butterflies To classify different types of
butterfly

200–400 300–500 Pteridine
pigments

105

Pollens, proteins,
standards (pollen
powder, proteins,
bacteria, spores,
fungi)

To discriminate pollen
among other bio-particles
under lab conditions using
fluorescence and FTIR

250–400 260–550 PCA 106

Components
included in
paintings

To classify selected resins,
oils and protein-based
media used in paintings

300–500 Offset
10–150

PCA
HCA

107

ECVA, extended canonical variates analysis; LDA, linear discriminant analysis; DMBA-TPA, 7,12-dimethylbenz(a)anthracene/12-O-
tetradecanoylphorbol-13-acetate; FTIR, Fourier transform infra red spectroscopy.

Table 5 Different sources of major contaminants

Major contaminants Examples

Environmental contaminants Polycyclic aromatic hydrocarbons, pesticides, mycotoxins
Food process contaminants Acrylamide, Maillard products, aromatic amines
Unauthorized adulterants and food additives See Section 6
Substances migrating from packaging materials See Section 6.4
Veterinary or human medicinal products Esoxacin

For screening purposes, the application of PARAFAC
or MCR-ALS offers added value for the detection of
unexpected compounds in a system and the ability to
identify the most contaminated samples. In the latter
case, a second step can involve U-PLS/RBL in order
to accurately estimate the concentrations of analytes
of interest. The results obtained can be compared with
more expensive and time-consuming separation tech-
niques such as HPLC-FLD. Figure 18 summarizes the
different chemometric treatments that are available. The
unfolded PLS method coupled with residual bilineariza-
tion (U-PLS/RBL)(110–112) is a multivariate calibration

method. Its main objective is the optimal prediction of
concentrations in a matrix Y using a model that links
the concentrations with information from EEM fluores-
cence measurements in a matrix X. U-PLS is coupled
with RBL to obtain a second-order benefit. RBL is a
postcalibration procedure based on a PCA and can be
used to model the presence of unexpected constituents
in a sample. Unlike PARAFAC and MCR-ALS, where
calibration and test samples are jointly broken down
by the model, U-PLS/RBL does not include unknown
samples at the calibration stage. Although U-PLS/RBL
is more flexible, this also implies a non-unique solution.

Encyclopedia of Analytical Chemistry, Online © 2006–2018 John Wiley & Sons, Ltd.
This article is © 2018 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Analytical Chemistry in 2018 by John Wiley & Sons, Ltd.
DOI: 10.1002/9780470027318.a9540



22 ELECTRONIC ABSORPTION AND LUMINESCENCE

J

I
I

=

=

J

A
X

Xijk

K

JK

x y

Cref

Sample 1
Samples (l)

λem (J)

λ e
x
 (
K

)

Sample 1
2
I
I

I

n

Sample 2

Sample n

Wavelength (J )

W
a
v
e
le

n
g
th

 (
lx
K

)

CD

K

(a)

(b)

(c)

CT

BT

ST

lx
K
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To test the various algorithms, a calibration set of 49
standard solutions of 9 PAH, and then a validation set
of 25 PAH solutions, were prepared. The interference
study was carried out using two mixtures containing the
16 US-EPA PAHs. While PARAFAC and MCR-ALS
required 11 factors to produce the best results with the
calibration set, U-PLS required 10. For the validation
set, 25 solutions are tested. Satisfactory predictions were
obtained with better results for U-PLS. PARAFAC and
MCR-ALS required a single model for all PAHs while
U-PLS required one model for each PAH. It can thus
be seen that PARAFAC and MCR-ALS are good algo-
rithms which are appropriate for rapid qualitative and
quantitative screening in environmental samples, but
a compromise is still necessary between performance
of the methods and the complexity of the results in
terms of the models that need to be managed. U-PLS
is a calibration method; it provides better quantitative
information for samples involving interferences and a
potential matrix effect. But it has two drawbacks: the
estimation of the number of unexpected contributions
at the RBL stage, and the enormous computation time
required to build the models. The latter method could be

used as a second step to accurately estimate the concen-
trations of analytes of interest. Table 6 describes technical
information from recent articles related to EEMs and
exogenous fluorophores. 3D fluorescence combined with
chemometric tools can, therefore, be used to analyze
contaminants such as PAHs, and also pesticides, myco-
toxins, etc. The limiting factor of this technique is the
limit of detection in some cases. It has been seen in
two very different cases that by applying U-PLS/RBL
after PARAFAC, it is possible to obtain more efficient
quantitative results.

6 APPLICATIONS

The following synthesis will focus on describing applica-
tions as a function of the purpose of the analysis, based on
different original articles that will be detailed regarding
their analytical and chemometric approaches. It can be
seen that analysis using 3D fluorescence spectroscopy is
often untargeted and rather a fingerprint approach; the
aim is mainly to characterize the samples in order to
determine and highlight what differentiates them from a
chemical point of view. For this purpose, the use of chemo-
metrics is necessary or even mandatory.
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Figure 19 PARAFAC fluorescent loadings for the four components of the non-negativity constrained PARAFAC model
constructed on the basis of the fluorescent landscapes of 57 wine samples. (Reprinted with permission from Airado-Rodriguez, D.,
Galeano-Diaz, T., Duran-Meras, I., and Wold, J. P. (2009). Usefulness of Fluorescence Excitation-Emission Matrices in Combination
with PARAFAC, as Fingerprints of Red Wines. Journal of Agricultural and Food Chemistry 57, 1711–1720. Copyright 2009 American
Chemical Society.(121))

This article will address the subject in terms of the
objectives commonly encountered in the scientific liter-
ature: classification, authentication, discrimination, eva-
luation (particularly quality levels), the implementation
of process indicators, and the detection of adulteration.

6.1 Classification – Authentication

In the field of classification, and more generally regarding
pattern recognition, there are two main ways to create
models which depend on whether information is avai-
lable on the groups of objects to be classified: the so-
called supervised and unsupervised pathways. To classify
samples by geographical region, type, or variety, EEM
fluorescence associated with chemometric tools is a real
asset. For example, 3D fluorescence spectroscopy is a
good solution for the classification of wines by grape
variety and/or geographical area.(50,121)

However, a visual analysis of the spectra does not
always enable their direct interpretation. On the one
hand, it is difficult to make an overall comparison of
all the spectra simultaneously without a computer tool,
while on the other, the fluorescence matrices obtained
are by construction a superimposition of the fluores-
cence of several fluorophores that might be present in
the sample. It is, therefore, necessary to use a signal
extraction method to reveal the different components in
the recorded signal and thus better classify the wines in
separate groups. It will also be possible to identify the
corresponding fluorophores from the excitation–emission
wavelength pairs present on the separate components of
the signal. In this section, we present one example using

PARAFAC as the signal extraction method(50,121) and
another that implements ICA.(122)

A recent study of 57 wines (Figure 19) used the
PARAFAC analysis with a four-component model, C1
to C4. In parallel, an HPLC analysis was performed to
calibrate the PARAFAC components with the concentra-
tions of some chemical compounds of interest in the wine
samples, and particularly polyphenols. Deconvolution
of the signal obtained using PARAFAC on the fluores-
cence data made it possible to demonstrate a certain
specificity of the PARAFAC components thus calculated.
For example, it can be seen that component C1 had a
maximum excitation at about 260 nm and a maximum
emission at 380 nm, so was not specific to a single family
of compounds; it could be closer to either phenolic
acids, t-resveratrol or anthocyanins.(50) The C2 compo-
nent tended to correspond to catechin and epicatechin
because its profile and emission and excitation maxima
were close to those might be seen for the spectra of these
compounds. The C3 component tended to correspond to
p-coumaric acid, t-resveratrol, t-piceid acid, and gentisic
acid, and C4 was associated with vanillic acid. Figure 20
shows the different factorial planes that tended to be
associated with the ‘regional’ effect (Figure 20a) or with
the ‘grape variety’ effect (Figure 20b). The plane formed
by C1 and C4 made it possible to visualize the distribution
of the different groups of wines within the multivariate
space formed by these two PARAFAC components.
The geographical origin effect is very clear, with the
Australian and Spanish samples being distinctly different
from the other samples on C1. On the other hand, C4
was able to separate Chilean wines from American and
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Figure 20 2D representations of PARAFAC scores corresponding to the fourth component against those corresponding to the
first and second ones. Samples are represented according to the origin (a) and grape variety within Chilean samples (b) in A: F
France, Ch. Chile S-Af South Africa S Spain Ar. Argentina A:Australia I:Italia P:Portugal.(50) (Reprinted with permission from
Airado-Rodriguez, D., Duran-Meras, I., Galeano-Diaz, T., and Wold, J. P. (2011). Front-face fluorescence spectroscopy: A new tool
for control in the wine industry. Journal of Food Composition and Analysis 24, 257–264. Copyright 2011 American Chemical Society.)

Spanish wines because of a higher content in vanillic
acid. The HPLC-FLD analysis produced results on three
profiles: 262/364 nm, 275/320 nm, and 330/410 nm. Good
correlations were observed between component 2 and
catechin concentrations at 275/320 nm (r2 = 0.90) and
between component 1 and peaks at 260/360 nm on the
chromatogram (r2 = 0.82). A good correlation could
also be observed between component 3 and the chro-
matogram at 330/410 nm. An alternative chemometric
pathway was used to distinguish the grape varieties. Our
research group proposed the use of ICA. To better high-
light the differences between varieties from the chemistry
of the samples, the fluorescence spectra were recorded

at pH levels which differed from the natural pH(122)

(Figure 21). Under the acid–base conditions selected,
compounds that initially had little or no fluorescence
became highly active due to an increase in electron
density at the deprotonated base sites. Because electronic
changes to the molecules have a significant impact on
possible electronic delocalization, molecular fluorescence
might be markedly impacted. This property was, there-
fore, exploited with respect to three grape varieties from
three different sources. So, to observe the modification
of the fluorescence, the pH of wines were modified to
values 7 and 8, to compare with the natural pH which
is around 3.5. The optimal ICA model thus calculated
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Figure 22 Proportions of IC5 at pH 8 vs IC5 at pH 7. Shiraz
(x), Pinot noir (o), and Cabernet Sauvignon (Δ). (Reproduced
with permission from Elsevier. © 2016.(122))

included seven ICs. The IC5 scores and signals at pH 7
and pH 8 could be represented (Figure 22). IC5 at pH7
and pH8 had a maximum of 280/380 nm fluorescence that
approximated to the wavelengths of anthocyanins.(121,122)

The scores of the two ICs were then represented on the
factorial plane. There was good discrimination of grape
varieties, especially Pinot Noir, as this contains more
anthocyanins than the other two grape varieties studied.

In the field of paint materials, total SFS can be used with
chemometric tools such as PCA or hierarchical cluster
analysis (HCA) to classify organic paint materials such
as protein-based binding media, drying oils, or varnish.
The originality of this technology is that the spectra are
standardized and used in the form of polar coordinate
contours with a common origin. PCR is then performed
on the polar coordinates of the contours and the scores
of the first two PCA components are used as inputs for
HCA. In this case, PCA is used to reduce the dimen-
sions of the initial dataset. The dendrogram supplies infor-
mation on the origin and chemical composition of the
paint materials. Figure 23 shows four different groups: (i)
shellac (the most distinctive); (ii) casein, egg, and isinglass
(a more heterogeneous group); (iii) drying oils; and (iv)
mastic and dammar (a more homogeneous group).

The aging and authenticity of vinegars have also been
studied using 3D fluorescence associated with different

chemometric methods such as PARAFAC, PLS-DA, and
SVM.(123) Indeed, the idea is to link certain techniques
in order to build a treatment process that will generate
a classification model. First, a signal extraction method
such as PARAFAC is used to characterize and discri-
minate the vinegars, and then a supervised method
such as PLS-DA or SVM is applied to build a classi-
fication model. PLS-DA is a PLS2-based classification
method(124) in which the groups are known in advance
and the variable to be explained from a categorical stand-
point is a matrix of the different classes called matrix
indicators. The PLS components are calculated to rank
the samples in the given groups within the columns of
the indicator matrix. SVM is able to perform both linear
and nonlinear classifications(125) and can reformulate the
ranking as a quadratic optimization problem. The goal is
to determine an optimal separation hyperplane (OSH)
between the different classes so as to enable the classifi-
cation of unknown samples. Maximizing the distance (or
margin) between the hyperplane and the samples closest
to the learning set can achieve this. PARAFAC enables
the extraction of more or less specific loadings of each
fluorophore (Figure 24), and their intensity is related to
the fluorophore concentration in the sample. To model
the separation between the groups, PLS-DA and SVM
were applied on the PARAFAC loadings of the mode
samples. Figure 24 shows the results with loadings on
the excitation mode (top left), loadings on the emission
mode (top right), and the factorial plane formed by the
first two PARAFAC components on the sample mode.
This study showed the superiority of SVM over PLS-DA
in solving classification problems where groups are not
clearly separated by a plane or hyperplane. In some cases,
the chemical similarities of samples cannot be modeled
using a linear factor model such as PARAFAC, which
is no more than a generalization of the PCA, so that
the discrimination between the groups remains poor.
Otherwise the original example is the study of various
Chinese traditional medicinal powders (called TCMs)
using fluorescence spectroscopy and chemometrics.(126)

Two medicinal herbs from the TCMs Cortex Phellodendri
Chinensis (CPC) and Cortex Phellodendri Amurensis

Encyclopedia of Analytical Chemistry, Online © 2006–2018 John Wiley & Sons, Ltd.
This article is © 2018 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Analytical Chemistry in 2018 by John Wiley & Sons, Ltd.
DOI: 10.1002/9780470027318.a9540



3D FLUORESCENCE SPECTROSCOPY AND ITS APPLICATIONS 27

0

Dammar

Dammar

Walnut

Walnut

Poppy

Casein

Egg white

Egg white

Egg yolk

Isinglass

Shellac

Cooked-
linseed

Linseed
Linseed

Mastic

Mastic

50 100

Euclidean weighted distance

150 200 250

Figure 23 Dendrogram representation of results of hierarchical cluster analysis of polar graphs of fluorescence spectra of 11
different media (excluding copal) following filtering of data. Clusters of four different colors are formed beneath a threshold distance
of 100 based on the weighted Euclidean distance between spectra. (Reprinted with permission from Nevin, A., Comelli, D., Valentini,
G., and Cubeddu, R. (2009). Total Synchronous Fluorescence Spectroscopy Combined with Multivariate Analysis: Method for the
Classification of Selected Resins, Oils, and Protein-Based Media Used in Paintings. Analytical Chemistry 81, 1784–1791. Copyright
2009 American Chemical Society.(107))

(CPA) and two toxic samples Caulis Mahoniae (CM) and
David Poplar Bark (DPB) were analyzed. Only DPB had
a very different spectrum, the others being very similar.
PROMETHEE and GAIA, two multi-criteria methods
for decision support, have also been proposed in this
context. Preference Ranking Organization METHod for
Enrichment Evaluation (PROMETHEE) is an ordered
classification method; it produces quantitative indices
φ, reflecting a relative performance of objects within
a group. The objective is to rank the decisions from
best to least good and to implement compromises. The
chosen function is Gaussian. The PC scores are used as
variables to which a reference object is assigned. High
value (positive) scores are preferentially determined by
φ, the net value of the classification index. The closest φ
values are associated with the most similar objects and
inversely, with the most different φ values are associated
the most different objects. Thus the range of values of the
φ index ranges from the most positive to the most nega-
tive. GAIA (geometrical analysis for iterative assistance)
highlights conflicting any criteria, identifies trade-offs and
helps to set priorities. GAIA produces a two-dimensional
graph (Figure 25) from the PCA scores that reflects less
than 100% of variance and is obtained using a matrix

derived from the Promethean φ indices. In the spectra
of samples containing a single ingredient, it is excitation
wavelengths with a higher φ index that best discriminate
samples in terms of their emission wavelengths. This
method produces interesting values but unfortunately
does not discriminate the entire dataset, i.e. medicinal
plants that are tested alone or mixed.

6.2 Quality Assessment – Quality Control

Evaluating quality does not necessarily target the same
aspects, depending on whether the study concerns
food, animals, or humans. For food products, quality
includes several components such as nutritional health
and organoleptic quality. Therefore, in order to improve
nutritional quality, it is interesting to characterize a food
in order to determine its content in sugars or trans-fatty
acids, to control oxidation and gain a clearer under-
standing of elements that are positive for health such as
polyphenols. A health quality assessment integrates a
risk assessment of contamination and, as mentioned in
Section 5.2, fluorescence offers a means to detect fluores-
cent contaminants with some success. As for organoleptic
quality, this can be determined using sensory analysis
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Elsevier. © 2012.(123))

and studies of food behavior which can help to reveal
consumer preferences.

A more objective approach to the evaluation of food
quality is physicochemical analysis which is increasingly
being supplemented by spectroscopic methods which can
contribute simplicity and sensitivity and have the advan-
tage of being noninvasive, so in most cases, they are very
rapid. It is in this context that fluorescence spectroscopy
has been used to evaluate the quality or freshness of fish,
the oxidation state of olive oil or the quality of milk. In
the same way as supervised classification, it is necessary
to evaluate the quality of a food in order to obtain a
quantitative indicator or scale of measurement for this
quality, in addition to fluorescence spectra. Once again,
the use of chemometrics to link spectral data with quan-
titative or qualitative data has become standard. Thus, in
the field of quality, the most widely used methods are PLS
or DA. To estimate the freshness of frozen intact fish (in
Japan), 3D fluorescence spectroscopy was used and the

findings compared with the freshness index.(127,128) The
idea was to develop a rapid and noninvasive method to
avoid thawing the fish samples that could distinguish fresh
fish from those whose state of conservation was less good
and seeing the appearance of biogenic amines such as
histamine, putrescine, cadaverine, etc. Thus EEM spectral
acquisition was performed on intact frozen fish using an
optical fiber. The concentration of ATP and its degrada-
tion products (e.g. ADP, AMP, IMP) was analyzed using
HPLC-UV in order to determine the K-value of the fresh-
ness index, which was calculated as the ratio between the
metabolites of nonphosphorylated ATP and all the degra-
dation products of ATP.

K-value(%) = HxR + Hx
ATP+ADP+AMP+IMP+HxR+Hx

×100

ATP, adenosine tri-phosphate; ADP, adenosine di-
phosphate; AMP, adenosine mono-phosphate; IMP,
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inosine-5′-monophosphate; HxR, inosine; Hx, hypoxan-
thine.

Three classes of samples were considered in this
problem: ‘first freshness’, ‘fresh’, ‘not fresh’. A PLS
regression of the Freshness index performed on the
unfolded fluorescence data made it possible to evaluate
the freshness of the frozen fish. Another specific algo-
rithm was also developed in order to select a combination
of excitation and emission wavelengths within the set
of EEM spectra that was specific to detecting changes
to the freshness of frozen fish (Figure 26). The authors
demonstrated a reasonable prediction of freshness indices
(r2 = 0.89) and an acceptable classification rate (87.5%)
of the fish samples. The problem with this type of study
is to obtain sufficient samples per class whose quality
needs to be predicted. Models often fail because of a
lack of robustness, and statistical representativeness is
often limited to local production and does not cover all
production in a region or country.

Known for its health benefits, olive oil needs to
be analyzed in terms of both its authenticity and its
geographical origin. Thus in the study by Guzman
et al.,(129) the objective was to determine whether the
fluorescence-PLS combination enabled the efficient eva-
luation of quality indices: peroxide index, K232, K270,
and acidity. Peroxide is an indicator of primary oxidation
products and K232 and K270 of secondary oxidation
products, and they correspond to fluorescence emission
between 450 and 600 nm. There was a good correlation

between Guzman’s and Guimet’s results(67) indicating
that fluorescence can ‘capture’ enough information to
enable a correct estimation of peroxide indices (r2 = 0.84)
and K270 (r2 = 0.9).

For the health assessments, the development of a predic-
tive 3D fluorescence spectroscopy method to determine
aerobic cells on the surface of beef may prove to be a
useful tool to control the risk of poisoning. The study by
Yoshimura et al.(54) focused on this issue with respect to
different storage periods. Microbiological counts (APC,
aerobic plate count) and fluorescence spectroscopy ana-
lysis were performed in parallel. Several endogenous fluo-
rophores were detected and their evolution followed over
time: tryptophan, NADH, porphyrin, and flavin. Trypto-
phan may arise from protein residues, bacteria, or meat.
Its level falls as the germ content rises, suggesting a loss
of amino acids in the meat due to their consumption by
bacteria. For other fluorophores, combining the results of
previous studies with an observed trend showed that, for
example the fluorescence of NAD(P)H increased when
bacteria such as Pseudomonas were growing. Overall,
PLS model predictions performed on the fluorescence
spectra revealed a good correlation, despite the variability
of autofluorescence intensities related to bacterial flora
and to the state of muscles and adipose tissues in the beef.

Evaluating the quality of samples using fluorescence
spectroscopy is thus able to discriminate samples versus
a quality criterion for health purposes(54,127,129) or for
authentication.(129)
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Elsevier. © 2015.(127))
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6.3 Process Indicators: Thermal and Photonic

3D fluorescence spectroscopy is a good indicator of
changes to spectral fingerprints during processes such as
heating. The case of vegetable oils is a good example.
Indeed, during heating, and particularly frying, vegetable
oils undergo complex chemical thermo-oxidation, poly-
merization, cis/trans isomerization, and cyclisation
reactions. This affects the nutritional and organoleptic
characteristics of the oil and results in the formation of
compounds that can be harmful to health such as trans
isomers and malondialdehyde, which is potentially toxic
because it reacts easily to form DNA adducts, and espe-
cially M1G (pyrimido[1,2-α] purine-10(3H)–one), which
is mutagenic.

Numerous articles have reported the value of 3D
fluorescence spectroscopy to observing the temperature-
related course of degradation of vegetable oils. Reference
can be made to the kinetic study on the heating of
Tunisian vegetable oils at different temperatures, with
or without the addition of an antioxidant.(69) The appli-
cation of ICA to the unfolded fluorescence cube made
it possible to extract the fluorescence signals related
to antioxidants such as vitamin E, which declines less
rapidly when a natural secondary antioxidant such as
an organic extract of Nigel is added. Another study

on olive oil revealed the usefulness of 3D fluorescence
analysis followed by PARAFAC when monitoring
heating-related changes affecting fluorophores, which
are notably observed with respect to oxidation products
(tocopherols) and could be linked to standard analyses of
polar compounds, tocopherols, etc., performed elsewhere
on the samples.(70,130)

With respect to cookie manufacturing, synchronous
frontal fluorescence has been used to rapidly estimate
levels of neoformed contaminants generated during the
manufacturing process.(13) Various compounds such as
carboxymethyllysine (CML) and hydroxymethylfurfural
(HMF), as well as acrylamide, were analyzed conven-
tionally using GC-MS-MS and HPLC. Different types of
dough and cooking methods were studied. Synchronous
fluorescence two-dimensional spectra were recorded
and transformed into excitation–emission matrices
(Figure 27). The PARAFAC breakdown produced
five fluorescence profiles containing tryptophan (Trp),
riboflavin (Rf), and three newly formed compounds
(Nf1, Nf2, Nf3) (Figure 28). For example, cookies made
using glucose might have lower tryptophan fluorescence
and more intense riboflavin profiles than those made
with sucrose. A high-saturated fatty acid content favored
lower levels of neoformed compounds (Nf1) and higher
concentrations of riboflavin (Rf) versus cookies made
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with a low saturated fat content. The study reported that
a regression model for the acrylamide, CML, and HMF
concentrations on PARAFAC loadings of the sample
mode indicated that the intensities of the fluorescence
profiles clearly discriminated the critical steps in the
baking process and facilitated the prediction of Acry-
lamide, CML, and HMF neoformed compounds in the
cookies.(13)

In another area, 3D fluorescence combined with a
multiway technique such as PARAFAC, MCR, and N-
PLS can be used to analyze the degradation of a cell
culture medium caused by exposure to ambient light
in the visible range.(131) Photodegradation resulted in
spectral changes and the breakdown of PARAFAC
and MCR findings revealed five factors: Trp, Tyr, pyri-
doxine (Py), folic acid (FA), and (Rf). Using this fast
method, it was possible to determine and quantify the
course of photodegradation. These different examples,
therefore, show that fluorescence spectroscopy analysis
combined with appropriate chemometrics tools can be
effective in determining the criteria to monitor and
control thermal(13,69) or photonic industrial processes.(131)

6.4 Adulteration

Adulteration constitutes economic fraud. In order to
reduce production costs, fraudulent adulteration prac-
tices add value to the by-products of industry or enable
the use of low-cost, imported raw materials. All food
sectors are subject to market regulation and have to
deal with the issue of adulteration. Adulteration can also
cause a loss of nutritional or functional properties. It
would be difficult to list all products that are commonly
adulterated, but because the objective is economic gain,
those most likely to be affected are foods with high added

value. They may be commercially for various reasons,
notably if they are essential foodstuffs such as meat or
milk where there is a need to produce greater quantities
and more cheaply. Products that can be categorized as
‘luxury’ or ‘local’ products may also be of interesting
with respect to adulteration(132) especially if they are
exported because their production is regional, such as
specific types of olive oil, honey, fruit puree, etc., and
the amounts produced are not as large as for staples. A
third category of high added value food products should
also be taken into account, which are those that are not
essential to our diet but whose tonnages are considerable,
such as coffee or wine. These products occupy an essen-
tial role in our cultures and societies, as is the case, for
example in Mediterranean populations. A report from
the European Parliament(132) presented a list of the prin-
cipal foods most subject to fraud: olive oil, fish, organic
foods, milk, cereals, and honey. A collateral effect of food
fraud is an increase in health risks. Indeed, the mani-
pulations involved in producing counterfeits introduce
both a chemical/microbiological risk and allergic risk, the
consequences of which may be important to the health
of consumers. The need for technical advances in fraud
detection has led researchers to continually test new tech-
nologies. 3D fluorescence is one of the techniques whose
applications have developed considerably during the past
15 years in terms of detection fraudulent foods. A dual
approach needs to be adopted, because in some cases
it may be easier to detect the adulterant by following
a so-called ‘targeted’ analytical approach, whereas in
others it will be more effective to use a global analytical
approach to obtain ‘footprints’. If we consider the case
of honey, both approaches may be useful, depending
on the type of sugar syrup that has been added. If the
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latter is derived from sugar cane, targeted research on the
presence of sclereous rings or parenchymal cells directly
from the plant will be sufficient. On the other hand, if
the syrup was made by the hydrolysis of wheat or corn
starches, no cell tracer can be detected and a more global
‘fingerprint’ approach may be more efficient,(133) using
stable carbon isotopic measurements of the entire sample
and the protein fraction (internal standard stable carbon
isotope ratio method (ISCIRA)).(134–136) 3D-fluorescence
can be applied under a global footprint approach. For
example, this was the case of a study which focused on
the addition of rice syrup to different types of honey.(137)

Modelling of this adulteration was performed using both
PLS regression and a multilayer neural network (arti-
ficial neural network, ANN). It can be seen that these
methods are evolving toward more complex artificial
intelligence techniques that are also more able to take
account of a greater complexity in the information to be
processed. Back propagation artificial neural network
(BP-ANN) type neural networks are the most common
and can, through a learning process, classify honey
samples as either ‘authentic’ or ‘adulterated’, or regress
the weights of the layer of output on a vector containing
the percentage adulteration of the samples. As with a PLS
regression, it is then possible to estimate the adulteration
rate of the samples for a given adulterant and within a
given range of adulteration.(137)

A fraud detection approach that uses both fluorescence
spectral fingerprinting and the determination of another
physicochemical quantity by a reference method has now
become conventional and demonstrated its effective-
ness with respect to numerous food products: honey,(137)

orange juice,(138) brandy,(139) olive oil,(16) milk,(63) etc.

7 CONCLUSION

3D or frontal fluorescence is a technique that has appli-
cations in many areas. The chemometric tools most
commonly associated with it enable a clearer under-
standing of the data generated. These tools can be used
alone or in combination in order to enhance the extrac-
tion of useful information or maximize performance
in a variable classification or in a predictive regression
process.

Fluorescence data offer a spectral fingerprint which
enables the characterization of samples in a very impor-
tant space of variability, such as that which is inherent
in food samples. Thus fluorescence spectroscopy will find
a broad range of applications that will ensure its equal
efficiency in foods and in biological substances such as
urine, feces, animal tissues, or environmental samples.
Most of these applications are still qualitative, although
quantitative methods are available. It will readily be

understood that the use of 3D fluorescence fingerprinting
is more suitable for recognition, classification or detection
processes where rapidity and sensitivity are crucial.
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ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Network
APC Aerobic Plate Count
ATR Attenuated Total Reflection
BI Business Intelligent
BP-ANN Back Propagation Artificial Neural

Network
BSA Bovine Serum Albumin
CCD Charge Coupled Device
DFA Discriminant Factor Analysis
DOM Dissolved Organic Matter
EEM Excitation Emission Matrix
FRI Fluorescence Regional Integration
GAIA Geometrical Analysis for Iterative

Assistance
GFP Green Fluorescent Protein
HCA Hierarchical Cluster Analysis
IC Independent Component
ICA Independent Component Analysis
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Isotope Ratio Method
MCR-ALS Multivariate Curve
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NADPH Nicotinamide Adenine Dinucleotide

Phosphate (forme réduite)
OSH Optimal Separation Hyperplane
PAH Polycyclic Aromatic Hydrocarbon
PARAFAC Parallel Factors Analysis
PCA Principal Component Analysis
PLS-DA Partial Least Squares-Discriminant

Analysis
PLS Partial Least Squares
PROMETHEE Preference Ranking Organization

METHod for Enrichment
Evaluation

SFS Synchronous Fluorescence
Spectroscopy

SVM Support Vector Machine
TCM Traditional Medicinal Powder
U-PLS/RBL Unfolded Partial Least Squares

Coupled to Residual Bilinearization
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